IV B.Tech - I Semester - Regular / Supplementary Examinations November 2016

FINITE ELEMENT METHODS
 (MECHANICAL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Answer any FIVE questions. All questions carry equal marks
1.
a) Derive stress strain relation matrix.

7 M
b) Derive the equilibrium equations for 3D body.
2.
a) Derive stiffness matrix for one dimensional bar element. 7 M
b) Consider the bar as shown in Figure-1. Calculate the following:
i) Nodal displacements. ii)Element stresses.

Take E=210 GPa $\mathrm{P}=10 \mathrm{kN}$

Figure-1
3. A wall of 0.6 m thickness having thermal conductivity of $1.2 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The wall is to be insulated with a material of thickness 0.006 m having an average thermal conductivity of $0.3 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The inner surface temperature is $1000^{\circ} \mathrm{C}$ and outside of the insulation is exposed to atmospheric air at $30^{\circ} \mathrm{C}$ with heat transfer coefficient of $35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the temperature distribution in the wall.

14 M
4. For the plane truss shown in Figure-2 determine the horizontal \& vertical displacements at nodes \& the stress in each element. All elements have $\mathrm{E}=201 \mathrm{GPa}$; $\mathrm{A}=4 \times 10^{-4} \mathrm{~m}^{2}$. Forces acting at Node 1 are $10 \mathrm{kN} \& 20 \mathrm{kN}$.

14 M

Figure-2
5. For the beam and loading shown in Figure-3. Calculate the rotation at B and $\mathrm{C} . \mathrm{E}=210 \mathrm{GPa} ; \mathrm{I}=6 \times 10^{6} \mathrm{~mm}^{4}$

14 M

Figure-3
6. Derive strain displacement matrix and stiffness matrix for the CST element.

14 M
7.
a) Derive the shape functions for 4-noded quadrilateral element.
b) Evaluate the integral $I=\int_{-1}^{+1}\left(2+x+x^{2}\right) d x$ and compare it with exact solution.
8. Determine the Eigen values and Eigen vectors for a stepped bar as shown in Figure-4 E $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} ; \quad \rho=800 \mathrm{~N} / \mathrm{m}^{3}$. $\mathrm{A}_{1}=100 \mathrm{~mm}^{2} ; \mathrm{A}_{2}=50 \mathrm{~mm}^{2}$.

14 M

Figure-4

